Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Food Funct ; 15(5): 2343-2365, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38323507

RESUMEN

American ginseng (Panax quinquefolius) has gained recognition as a medicinal and functional food homologous product with several pharmaceutical, nutritional, and industrial applications. However, the key regulators involved in ginsenoside biosynthesis, the spatiotemporal distribution characteristics of ginsenosides, and factors influencing ginsenosides are largely unknown, which make it challenging to enhance the quality and chemical extraction processes of the cultivated American ginseng. This review presents an overview of the pharmacological effects, biosynthesis and spatiotemporal distribution of ginsenosides, with emphasis on the impacts of biotic and abiotic factors on ginsenosides in American ginseng. Modern pharmacological studies have demonstrated that American ginseng has neuroprotective, cardioprotective, antitumor, antidiabetic, and anti-obesity effects. Additionally, most genes involved in the upregulation of ginsenoside biosynthesis have been identified, while downstream regulators (OSCs, CYP450, and UGTs) require further investigation. Futhermore, limited knowledge exists regarding the molecular mechanisms of the impact of biotic and abiotic factors on ginsenosides. Notably, the nonmedicinal parts of American ginseng, particularly its flowers, fibrous roots, and leaves, exhibit higher ginsenoside content than its main roots and account for a considerable amount of weight in the whole plant, representing promising resources for ginsenosides. Herein, the prospects of molecular breeding and metabolic engineering based on multi-omics to improve the unstable quality of cultivated American ginseng and the shortage of ginsenosides are proposed. This review highlights the gaps in the current research on American ginseng and proposes solutions to address these limitations, providing a guide for future investigations into American ginseng ginsenosides.


Asunto(s)
Ginsenósidos , Panax , Ginsenósidos/química , Flores/metabolismo , Hojas de la Planta/metabolismo , Panax/química , Raíces de Plantas/química
2.
Sci Total Environ ; 919: 170801, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340858

RESUMEN

Addressing soil salinization and implementing sustainable practices for cultivating cash crops on saline-alkali land is a prominent global challenge. Cynomorium songaricum is an important salt-alkali tolerant medicinal plant capable of adapting to saline-alkali environments. In this study, two typical ecotypes of C. songaricum from the desert-steppe (DS) and saline-alkali land (SAL) habitats were selected. Through the integration of multi-omics with machine learning, the rhizosphere microbial communities, genetic maps, and metabolic profiles of two ecotypes were created and the crucial factors for the adaptation of C. songaricum to saline-alkali stress were identified, including 7 keystone OTUs (i.e. Novosphingobium sp., Sinorhizobium meliloti, and Glycomyces sp.), 5 core genes (cell wall-related genes), and 10 most important metabolites (i.e. cucurbitacin D and 3-Hydroxybutyrate) were identified. Our results indicated that under saline-alkali environments, the microbial competition might become more intense, and the microbial community network had the simple but stable structure, accompanied by the changes in the gene expression related to cell wall for adaptation. However, this regulation led to the reduction in active ingredients, such as the accumulation of flavonoids and organic acid, and enhanced the synthesis of bitter substances (cucurbitacin D), resulting in the decrease in the quality of C. songaricum. Therefore, compared to the SAL ecotype, the DS was more suitable for the subsequent development of medicinal and edible products of C. songaricum. Furthermore, to explore the reasons for this quality variation, we constructed a comprehensive microbial-genetic-metabolic regulatory network, revealing that the metabolism of C. songaricum was primarily influenced by genetic factors. These findings not only offer new insights for future research into plant salt-alkali tolerance strategies but also provide a crucial understanding for cultivating high-quality medicinal plants.


Asunto(s)
Cynomorium , Microbiota , Triterpenos , Transcriptoma , Cynomorium/química , Cynomorium/fisiología , Álcalis , Metaboloma
3.
J Plant Res ; 137(1): 37-48, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37917204

RESUMEN

Geum japonicum (Rosaceae) has been widely used in China as a traditional herbal medicine due to its high economic and medicinal value. However, the appearance of Geum species is relatively similar, making identification difficult by conventional phenotypic methods, and the studies of genomics and species evolution are lacking. To better distinguish the medicinal varieties and fill this gap, we carried out relevant research on the chloroplast genome of G. japonicum. Results show a typical quadripartite structure of the chloroplast genome of G. japonicum with a length of 156,042 bp. There are totally 131 unique genes in the genome, including 87 protein-coding genes, 36 tRNA genes, and 8 rRNA genes, and there were also 87 SSRs identified and mostly mononucleotide Adenine-Thymine. We next compared the plastid genomes among four Geum species and obtained 14 hypervariable regions, including ndhF, psbE, trnG-UCC, ccsA, trnQ-UUG, rps16, psbK, trnL-UAA, ycf1, ndhD, atpA, petN, rps14, and trnK-UUU. Phylogenetic analysis revealed that G. japonicum is most closely related to Geum aleppicum, and possibly has some evolutionary relatedness with an ancient relic plant Taihangia rupestris. This research enriched the genome resources and provided fundamental insights for evolutionary studies and the phylogeny of Geum.


Asunto(s)
Genoma del Cloroplasto , Geum , Filogenia , Genoma del Cloroplasto/genética , Geum/genética , Genómica/métodos , Cloroplastos/genética
4.
Fitoterapia ; 172: 105787, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38122855

RESUMEN

Eleutherine bulbosa (Mill.) Urb. is a medicinal and edible plant with various benefits for humans and animals. In this work, four new phenolic constituents (1-4), along with six known phenolic compounds (5-10) were obtained from the red bulbs of E. bulbosa. Their structures with absolute configurations were characterized by extensive spectroscopic analysis, combined with HR-ESI-MS and quantum mechanical electronic circular dichroism (ECD). Compounds 1 and 2 are novel homologous and heterodimers, respectively, featuring an unusual spiro ring system. All isolated phenolic constituents were tested for their antibacterial effects. The results revealed four phenolic compounds 1-3 and 7 showed moderate antibacterial activity against Bacillus subtilis, Staphylococcus aureus and Escherichia coli with minimum inhibitory concentration (MIC) values ranging from 15.6 to 250.0 µg/mL.


Asunto(s)
Antibacterianos , Iridaceae , Animales , Humanos , Estructura Molecular , Staphylococcus aureus , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Fenoles/farmacología , Fenoles/química , Escherichia coli
5.
Gene ; 893: 147919, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37884103

RESUMEN

Nepeta bracteata (N. bracteata) is an important medicinal plant used by Chinese ethnic minorities. However, the lack of knowledge regarding the chloroplast genome of N. bracteata has imposed current limitations on our study. Here, we used Next-generation sequencing to obtain the chloroplast genome of N. bracteata. The findings suggested that the 151,588 bp cp genome of N. bracteata comprises 130 genes, including 35 tRNA genes and 87 protein-coding genes. And its chloroplast genome exhibits a typical quadripartite structure, the largest single copy (LSC; 82,819 bp) and the smallest single copy (SSC; 17,557 bp) separate a pair of inverted repeats IR regions (IRa and IRb; 25,606 bp) from one another. Interestingly, palindromic repeats are more common, as shown by the examination of repetition. In the interim, 18 SSRs were discovered in the interim, the bulk of which were Adenine-Thymine (A-T) mononucleotides. Meanwhile, we compared it with five other species from the Nepeta genus. Five hypervariable areas were found by the study, including ndhH-rps15, accD-psal, ndhG-ndhl, trnH-GUG-psbA, and rpoC1-rpoB. Furthermore, the phylogenetic study revealed that N. bracteata and Nepeta stewartiana (N. stewartiana) were linked to each other most closely. In summary, our findings enrich the resources available for chloroplast genomes in the Nepeta genus. Moreover, these hypervariable regions have the potential to be developed into molecular markers, enabling the rapid identification of species within the Nepeta genus. Comparative analysis of species within the Nepeta genus can help enhance our study of their phylogenetic relationships, potential medicinal properties and bioprospecting.


Asunto(s)
Genoma del Cloroplasto , Nepeta , Plantas Medicinales , Filogenia , Nepeta/genética , Cloroplastos/genética , Plantas Medicinales/genética
6.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4959-4966, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802837

RESUMEN

The suitable habitat for the endangered and valuable medicinal herb Panax ginseng is gradually decreasing. It is crucial to investigate its suitable growing areas in China for global protection and sustainable utilization of P. ginseng. In this study, 371 distribution points of P. ginseng were collected, and 21 environmental factors were used as ecological indicators. The geographic information system for global medicinal plants(GMPGIS) system, MaxEnt model, and Thiessen polygon method were used to analyze the potential suitable areas for P. ginseng globally. The results showed that the key environmental variables affecting P. ginseng were precipitation in the hottest quarter(Bio18) and the coefficient of temperature seasonality(Bio4). The suitable habitats for P. ginseng were mostly located in the "One Belt, One Road" countries such as China, Japan, South Korea, North Korea, and Russia. The highly suitable habitats were mainly distributed along mountain ranges in southeastern Shandong, southern Shanxi and Shaanxi, northern Jiangsu, and northwestern Henan of China. Data analysis indicated that the current P. ginseng planting sites were all in high suitability zones, and the Thiessen polygon results showed that the geographic locations of P. ginseng production companies were unbalanced and urgently needed optimization. This study provides data support for P. ginseng planting site selection, scientific introduction, production layout, and long-term development planning.


Asunto(s)
Panax , Plantas Medicinales , Ecosistema , China , Sistemas de Información Geográfica , Temperatura
7.
Gene ; 871: 147427, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37044183

RESUMEN

BACKGROUND: Artemisia argyi L., also known as mugwort, is a perennial herb whose leaves are commonly used as a source of traditional medicines. However, the evolution and structure of the mitochondrial genome (mitogenome) in A. argyi remain unclear. In this study, the mitogenome of A. argyi was assembled and characterized for the first time. RESULTS: The mitogenome of A. argyi was a circular molecule of 229,354 bp. It encodes 56 genes, including 33 protein-coding genes (PCGs), 20 tRNA genes, and three rRNA genes, and three pseudogenes. Five trans-spliced introns were observed in three PCGs namely, nad1, nad2 and nad5. Repeat analysis identified 65 SSRs, 14 tandem repeats, and 167 dispersed repeats. The A. argyi mitogenome contains 12 plastid transfer sequences from 79 bp to 2552 bp. Five conserved MTPTs were identified in all 18 Asteraceae species. Comparison of mitogenome between A. argyi and one Artemisia specie and two Chrysanthemum species showed 14 conserved gene clusters. Phylogenetic analysis with organelle genomes of A. argyi and 18 other Anthemideae plants showed inconsistent phylogenetic trees, which implied that the evolutionary rates of PCGs and rrna genes derived from mitochondrion and plastid were incongruent. The Ka/Ks ratio of the 27 shared protein-coding genes in the 18 Anthemideae species are all less than 1 indicating that these genes were under the effect of purifying selection. Lastly, a total of 568 RNA editing sites in PCGs were further identified. The average editing frequency of non-synonymous changes was significantly higher than that of synonymous changes (one-sample Student's t-test, p-values ≤ 0.05) in three tissues (root, leaf and stem). CONCLUSIONS: In this study, the gene content, genome size, genome comparison, mitochondrial plastid sequences, dN/dS analysis of mitochondrial protein-coding genes, and RNA-editing events in A. argyi mitogenome were determined, providing insights into the phylogenetic relationships of Asteraceae plant.


Asunto(s)
Artemisia , Chrysanthemum , Genoma Mitocondrial , Tanacetum , Humanos , Artemisia/genética , Tanacetum/genética , Chrysanthemum/genética , Filogenia , Mitocondrias/genética , Proteínas Mitocondriales/genética
8.
Heliyon ; 9(3): e14029, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36911881

RESUMEN

Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.

9.
Food Funct ; 14(6): 2710-2726, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36852499

RESUMEN

Safflower (Carthamus tinctorius) has the efficacy for promoting blood circulation and preventing cardiovascular and Alzheimer's diseases and is thus a valuable medicinal and functional food plant. However, how to evaluate high-quality safflower is still a problem. To differentiate intraspecies ecotypes and illustrate the mechanisms of differential metabolites of C. tinctorius from different regions, this study combined the widely targeted metabolome, weighted network pharmacology, and molecular docking to filter bioactive compounds and predict the target preference. The results indicated that kaempferol is suitable as a secondary Q-marker to differentiate intraspecies ecotypes. In secondary metabolites, the average content of kaempferol and its derivates in C. tinctorius from Sichuan is three times that of other areas, which have the potential for the targeted medicine of CA2 and TNF. In volatile metabolites, isoaromadendrene epoxide has the potential as a specifically targeted medicine of RXRA. The change of the target preference could be the reason for the difference in drug efficacy among different varieties of C. tinctorius. It is reasonable that Sichuan was recognized as a high-quality ecotype producing region of C. tinctorius in China, which promotes blood circulation and removes blood stasis. This study provides an innovative method to differentiate intraspecies ecotypes and explore their target preference.


Asunto(s)
Carthamus tinctorius , Quempferoles , Ecotipo , Simulación del Acoplamiento Molecular , Extractos Vegetales/metabolismo
10.
Genes (Basel) ; 13(12)2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36553498

RESUMEN

Laportea bulbifera (L. bulbifera) is an important medicinal plant of Chinese ethnic minorities, with high economic and medicinal value. However, the medicinal materials of the genus Laportea are prone to be misidentified due to the similar morphological characteristics of the original plants. Thus, it is crucial to discover their molecular marker points and to precisely identify these species for their exploitation and conservation. Here, this study reports detailed information on the complete chloroplast (cp) of L. bulbifera. The result indicates that the cp genome of L. bulbifera of 150,005 bp contains 126 genes, among them, 37 tRNA genes and 81 protein-coding genes. The analysis of repetition demonstrated that palindromic repeats are more frequent. In the meantime, 39 SSRs were also identified, the majority of which were mononucleotides Adenine-Thymine (A-T). Furthermore, we compared L. bulbifera with eight published Laportea plastomes, to explore highly polymorphic molecular markers. The analysis identified four hypervariable regions, including rps16, ycf1, trnC-GCA and trnG-GCC. According to the phylogenetic analysis, L. bulbifera was most closely related to Laportea canadensis (L. canadensis), and the molecular clock analysis speculated that the species originated from 1.8216 Mya. Overall, this study provides a more comprehensive analysis of the evolution of L. bulbifera from the perspective of phylogenetic and intrageneric molecular variation in the genus Laportea, which is useful for providing a scientific basis for further identification, taxonomic, and evolutionary studies of the genus.


Asunto(s)
Genoma del Cloroplasto , Plantas Medicinales , Filogenia , Plantas Medicinales/genética , Cloroplastos/genética
11.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807215

RESUMEN

Cynomorium songaricum is an important endangered plant with significant medicinal and edible values. However, the lack of resources and quality variation have limited the comprehensive developments and sustainable utilization of C. songaricum. Here, we evaluated the chemical and genetic traits of C. songaricum from the highly suitable habitat regions simulated with species distribution models. The PCA and NJ tree analyses displayed intraspecific variation in C. songaricum, which could be divided into two ecotypes: ecotype I and ecotype II. Furthermore, the LC-MS/MS-based metabolomic was used to identify and analyze the metabolites of two ecotypes. The results indicated that a total of 589 compounds were detected, 236 of which were significantly different between the two ecotypes. Specifically, the relative content and the kind of flavonoids were more abundant in ecotype I, which were closely associated with the medicinal activities. In contrast, amino acids and organic acids were more enriched in ecotype II, which may provide better nutritional quality and unique flavor. In summary, our findings demonstrate the ecotype division and chemical diversity of C. songaricum in China from different geographical regions and provide a reference for the development of germplasm and directed plant breeding of endangered medicinal plants.


Asunto(s)
Cynomorium , Cromatografía Liquida , Cynomorium/química , Ecotipo , Fitomejoramiento , Espectrometría de Masas en Tándem
12.
BMC Plant Biol ; 22(1): 379, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906545

RESUMEN

BACKGROUND: Flowering is a critical physiological change that interferes with not only biomass yield but also secondary metabolism, such as the biosynthesis of flavonoids, in rhizome/root plants. The continuous inflorescence removal (CIR) treatment is frequently conducted to weaken this effect. Fagopyrum dibotrys (D.Don) H.Hara (Golden buckwheat) is a kind of rhizome medicinal plant rich in flavonoids and is widely used for the treatment of lung diseases. The CIR treatment is usually conducted in F. dibotrys because of its excessive reproductive growth. To uncover the molecular mechanisms, comprehensive analysis was performed using metabolome and transcriptome data obtained from normally bloomed and the CIR treated plants. RESULTS: Metabolome results demonstrated that in the rhizomes of F. dibotrys, its bioactive compound called epicatechin has higher amount than most of the detected precursors. Compared with the normally bloomed plants, the level of epicatechin in the rhizomes of the CIR group increased by 25% at the withering stage. Based on 96 samples of the control and the CIR groups at 4 flowering stages for 4 tissues, RNA-Seq results revealed a 3 ~ 5 times upregulations of all the key enzyme genes involved in the biosynthesis of epicatechin in both time (from the bud stage to the withering stage) and spatial dimensions (from the top of branch to rhizome) under the CIR treatment compared to normal flowering. Integrated analysis of LC-MS/MS and transcriptome revealed the key roles of several key enzyme genes besides anthocyanidin reductase (ANR). A total of 93 transcription factors were identified to co-expressed with the genes in epicatechin biosynthetic pathway. The flowering activator SQUAMOSA promoter-binding protein like (SPLs) exhibited opposite spatiotemporal expression patterns to that of the epicatechin pathway genes; SPL3 could significantly co-express with all the key enzyme genes rather than the flowering repressor DELLA. Weighted gene co-expression network analysis (WGCNA) further confirmed the correlations among chalcone synthases (CHSs), chalcone isomerases (CHIs), ANRs, SPLs and other transcription factors. CONCLUSIONS: SPL3 might dominantly mediate the effect of normal flowering and the CIR treatment on the biosynthesis of epicatechin in rhizomes mainly through the negative regulations of its key enzyme genes including CHS, CHI and ANR.


Asunto(s)
Catequina , Chalconas , Fagopyrum , Antocianinas/metabolismo , Cromatografía Liquida , Fagopyrum/genética , Flavonoides , Regulación de la Expresión Génica de las Plantas , Inflorescencia , Oxidorreductasas/metabolismo , Espectrometría de Masas en Tándem , Factores de Transcripción/genética
13.
Genome ; 65(7): 363-375, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35531903

RESUMEN

Gentianopsis barbata is an essential medicinal plant in China with high ornamental and medicinal values. Unfortunately, the study of the chloroplast genome of this plant still has a gap. This study sequenced and characterized the complete chloroplast genome of G. barbata. The complete chloroplast genome of G. barbata is a typical circular structure of 151 123 bp. It consists of a large single-copy region (82 690 bp) and a small single-copy region (17 887 bp) separated by a pair of inverted repeats (25 273 bp), which covers 78 protein-coding genes, 30 tRNAs, and 4 rRNAs. The long repeat sequence analysis showed that the P-type (palindromic) sequences were the major long repeat sequences. Thirty-seven simple sequence repeats were identified, most of which were single nucleotides. The Bayesian inference tree, maximum likelihood tree, and neighbor-joining tree suggested that G. barbata is grouped with Gentianopsis grandis and Gentianopsis paludosa. The divergence time analysis showed that G. barbata diverged at 1.243 Mya. Comparative analysis of chloroplast genomes can reveal interspecific diversity, and regions with high variation can be used to develop molecular markers applicable to various research areas. Our results provide a new insight into plastome evolution and a valuable resource for further studies on G. barbata.


Asunto(s)
Genoma del Cloroplasto , Gentianaceae , Teorema de Bayes , Cloroplastos/genética , Gentianaceae/genética , Repeticiones de Microsatélite , Filogenia
14.
Chin J Integr Med ; 28(7): 661-671, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34755289

RESUMEN

Cancer is one of the most devastating diseases worldwide and definitive therapeutics for treating cancer are not yet available despite extensive research efforts. The key challenges include limiting factors connected with traditional chemotherapeutics, primarily drug resistance, low response rates, and adverse side-effects. Therefore, there is a high demand for novel anti-cancer drugs that are both potent and safe for cancer prevention and treatment. Gallic acid (GA), a natural botanic phenolic compound, can mediate various therapeutic properties that are involved in anti-inflammation, anti-obesity, and anti-cancer activities. More recently, GA has been shown to exert anti-cancer activities via several biological pathways that include migration, metastasis, apoptosis, cell cycle arrest, angiogenesis, and oncogene expression. This review discusses two aspects, one is the anti-cancer potential of GA against different types of cancer and the underlying molecular mechanisms, the other is the bibliometric analysis of GA in cancer and tumor research. The results indicated that lung cancer, prostate cancer, stomach cancer, and colon adenocarcinoma may become a hot topic in further research. Overall, this review provides evidence that GA represents a promising novel, potent, and safe anti-cancer drug candidate for treating cancer.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias del Colon , Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Ácido Gálico/farmacología , Ácido Gálico/uso terapéutico , Humanos , Masculino
15.
Chin J Integr Med ; 28(6): 547-553, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34921646

RESUMEN

OBJECTIVE: To investigate the current status and further development of Panax genus and 6 important individual species including P. notoginseng, P. quinquefolium, P. vietnamensis, P. japonicus, P. stipuleanatus and P. zingiberensis. METHODS: The bibliometric analysis was based on the Web of Science core database platform from Thomson Reuters. Totally, 7,574 records of scientific research of Panax species published from 1900-2019 were analyzed. The statistical and visualization analysis was performed by CiteSpace and HistCite software. RESULTS: The academic research of Panax species increase promptly. Plant science is the main research field while research and experimental medicine and agricultural engineering will be the further development tendency. Particularly, the discrimination research of P. notoginseng will be the research tendency among Panax species, especially diversity research. In addition, P. vietnamensis deserves more attention in the genus Panax. CONCLUSION: This research provides a reference for further research of the genus and individual species.


Asunto(s)
Panax , Bibliometría
16.
Pharmacol Res ; 175: 106001, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826602

RESUMEN

The nutraceutical market is currently a high-impact multi-billion-dollar industry, and it is anticipated to grow rapidly over the next decade. Nutraceuticals comprise diverse food-derived product categories that have become widespread due to increased consumer awareness of potential health benefits and the need for improved wellness. This targeted review is designed to identify the current global trends, market opportunities, and regulations that drive the nutraceutical industry. Safety and efficacy concerns are also explored with a view to highlighting areas that necessitate further research and oversight. Key drivers of the nutraceutical market include aging populations, consumer awareness, consumer lifestyle, increasing cost of healthcare, and marketing channels. Although some nutraceuticals hold promising preventive and therapeutic opportunities, there is a lack of a universal definition and regulatory framework among countries. Moreover, there is a lack of adequate evidence for their efficacy, safety, and effectiveness, which was even further highlighted during the ongoing coronavirus pandemic. Future prospective epidemiological studies can delineate the health impact of nutraceuticals and help set the scientific basis and rationale foundation for clinical trials, reducing the time and cost of trials themselves. Together, an understanding of the key drivers of the nutraceutical market alongside a consistent and well-defined regulatory framework will provide further opportunities for growth, expansion, and segmentation of nutraceuticals applications.


Asunto(s)
Productos Biológicos/uso terapéutico , Suplementos Dietéticos , Industria Farmacéutica/tendencias , Industria de Alimentos/tendencias , Animales , Productos Biológicos/efectos adversos , Comercio , Seguridad de Productos para el Consumidor , Suplementos Dietéticos/efectos adversos , Aprobación de Drogas , Industria Farmacéutica/legislación & jurisprudencia , Industria de Alimentos/legislación & jurisprudencia , Humanos , Legislación Alimentaria/tendencias , Medición de Riesgo
17.
Food Funct ; 12(16): 7501-7513, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34223597

RESUMEN

Cynomorium songaricum is a medicinal, edible, and endangered plant species. Since inflorescences are not considered medicinal parts, their discard causes a waste of resources. To expand the medicinal uses of C. songaricum, we evaluated their chemistry and pharmacology by applying widely targeted metabolomics, network pharmacology, and molecular docking. Widely targeted metabolomics results indicated chemical diversity in C. songaricum with 599 compounds. Among them, 280 compounds were different between the succulent stem and inflorescence. With 218 upregulated compounds, inflorescence has more abundant compounds than the succulent stem, especially pigment compounds such as flavonols, flavones, and flavanones. Moreover, anthocyanin and proanthocyanidin were unique compounds in the inflorescence and succulent stem, respectively. Sixty-five compounds in inflorescence and 18 compounds in succulent stems were found to be associated with atherosclerosis in the network pharmacology analysis. Tests revealed that inflorescence had a stronger anti-atherosclerotic effect than succulent stems. Molecular docking analysis revealed that 30 compounds (29 pigment compounds) in inflorescence and 6 compounds (4 pigment compounds) in succulent stem showed strong binding affinities with three target proteins, namely ALB, MPO, and NOS2, especially amentoflavone, quercetin 7-O-rutinoside, and luteolin 7-O-glucoside (cynaroside). Results demonstrated that the inflorescence is rich in pigment compounds and has a potential anti-atherosclerosis effect. This study provides novel methods and ideas for the sustainable development of endangered medicinal plants.


Asunto(s)
Cynomorium/química , Inflorescencia/química , Plantas Medicinales/química , Simulación del Acoplamiento Molecular/métodos
18.
Plant Signal Behav ; 16(11): 1952372, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34304705

RESUMEN

American ginseng, a valuable medicinal and food plant, is threatened by rot root, which affects its yield and quality. However, limited studies have investigated the changes in soil microbial community and physiochemical properties between healthy and rot root American ginseng. Here, high-throughput sequencing and soil physiochemical properties were used to characterize these changes. The soil physiochemical properties showed significance differences between the soil of healthy and rot root, in which the pH, available potassium, available phosphorus, soil organic carbon and soil organic matter were significantly higher in healthy root soil. Besides, fungal α-diversity was also higher in healthy root soil than that in rot root. Importantly, the dominant fungal genera differed between soils of healthy and rot root of American ginseng, and LEfSe further indicated that six fungal genera (Devriesia, Chrysosporium, Dichotomopilus, Pseudeurotium, Acaulium and Scedosporium) were significantly enriched in the soil of healthy plants, whereas six fungal genera (Gibellulopsis, Fusarium, Plectosphaerella, Tetracladium, Gibberella and Ilyonectri) were significantly enriched in the soil of rot root, suggesting that an increase in the relative abundance of these pathogenic fungi (Fusarium, Plectosphaerella, and Ilyonectri) may be associated with ginseng rot root. Notably, this study is the first to report that an increase in the relative abundances of Gibellulopsis and Gibberella in the rot root soil of American ginseng may be associated with the onset of rot root symptoms in this plant. The functional profile prediction showed that the there was a significantly Pathotrophs increase in the rot root soil compared with healthy root soil and Saprotrophs were more abundant in the healthy root soil. Finally, correlation analyses revealed that soil cation exchange capacity was an important factors affecting the composition of rot root of American ginseng soil microbial communities. This study not only used a new approach to explore the new fungal associated with rot root in American ginseng but also excavated the major soil physiochemical properties affecting the microbiome diversity, providing foundation for developing biocontrol strategies against rot root.


Asunto(s)
Biodiversidad , Hongos , Microbiota , Panax/microbiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Suelo/química , Plantas Medicinales/microbiología , Rizosfera , Microbiología del Suelo
19.
Mitochondrial DNA B Resour ; 6(4): 1468-1470, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33969197

RESUMEN

Cirsium japonicum (C. japonicum) is a traditional Chinese medicine belonging to the family Asteraceae. The previous studies have indicated that the chemical compound content of C. japonicum from different places was different. To distinguish C. japonicum from different geographies, the chloroplast genome of C. japonicum from China was sequenced and compared with that from Korea. The total length of this genome is 152,602 bp, similar to that of Korea (152,606 bp). It has a conservative quartile structure which is composed of a large single-copy (LSC) region, a small single-copy (SSC) region and a pair of inverted repeats (IRs) regions, with lengths of 83,487 bp, 18,721 bp, and 25,197 bp, respectively. It encodes 79 protein-coding, 27 transfer RNAs, and 4 ribosomal RNA genes. The overall GC content of the genome is 37.70%. A total of 20 single nucleotide polymorphisms and 6 insertions and deletions were identified between the chloroplast genome of C. japonicum from China and Korea. These results can be applied to develop molecular markers to distinguish C. japonicum from different geographical origins.

20.
Biomed Chromatogr ; 35(4): e5024, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33169405

RESUMEN

This study was designed to explore the bioactive ingredients in the extracts of Fallopia denticulata (C.C. Huang) Holub, a medicinal plant grown in China, which exhibits the best neuraminidase (NA) inhibition activity. Three fractions of ethyl acetate, ethanol, and water were tested on NA inhibition assay, and the best one was conducted by ultra-performance liquid chromatography-time-of-flight mass spectrometry in the negative and positive modes to analyze the metabolic components. The results revealed the identification of the following 21 compounds: 3 organic acids, 11 flavonoids, 1 coumarin, and 6 others, such as ß-daucosterol, gallic acid, and syringic acid, of which 12 compounds were discovered for the first time in F. denticulata. In addition, we used the molecular docking technique to support the anti-NA activity of each compound in the best extract. The results confirmed that the two better bioactive compounds were (-)-epicatechin gallate and (+)-catechin. Therefore, F. denticulata could be used as a potential material for new anti-influenza drugs.


Asunto(s)
Medicamentos Herbarios Chinos , Inhibidores Enzimáticos , Fallopia/química , Neuraminidasa/antagonistas & inhibidores , Plantas Medicinales/química , Catequina , China , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/farmacología , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Ácido Gálico , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Neuraminidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA